Map-reduce, Hadoop
and
The communication bottleneck

Yoav Freund
UCSD /
Computer Science and Engineering

Plan of the talk

Why is Hadoop so popular?
HDES
Map Reduce

Word Count — example using Hadoop streaming
and python.

Computing pairwise interactions using map-
reduce.

The communication bottleneck: sort and shuffle.
K-means analysis.
Spark

How did hadoop become so popular?

News
) i i . & PRINT
Intel to Discontinue Pentium 4 Extreme Edition
Processor. £) SHARE o %047 .
Intel to Remove 3.20GHz Extreme Edition Processor from the Family
o & COMMENTS (3)

2004 11:56 PM

Ambmanm Cl -
ATILOTN SOV

Intel Corp., the world’s largest maker of microprocessors and supporting logic, Friday
announced product discontinues plan for its original Intel Pentium 4 Extreme Edition
microprocessor that was unveiled during IDF Fall 2003.

“Market demand for the Intel Pentium 4 processor «™ Extreme Edition supporting Hyper-
Threading technology 3.20GHz with 800MHz processor system bus in mPGA478 packaging
has shifted to higher performance Intel processors,” the company said it its statement sent to
clients.

What happened?

Going above 3.2Ghz proved impractical
— The power wall
— The temperature wall

Number of transistors still doubles but they
cannot all be powered.

Multi-core CPU chips: 2,4,8,...

Large computer clusters / data-centers / the
cloud.

Big Data

What is big data?

* So much data you cannot store it?

° NO | Seagate Backup Plus 4 TB USB 3.0 Desktop
" External Hard Drive STCA4000100

$239.99 $169.99 . Drime

* So much data you cannot process it?

* No! Bandwidth of a single CPU is 100 GB/sec
* So much data you cannot communicate it?

e YES!!

Prices of bandwidth
in the memory hierarchy (october 2012

Cost

On-Chip
with CPU

Power

low-end: iTouch: 1Watt
high-end: Intel Core
i7-950: 130Watt

Block

Size

L1:32-64 Bytes
L2: 64-256 Bytes

Bandwidth

|00s of GB/
sec

D1V B 8%-16$/GB

| -2 Watts/GB

max

throughput at:
8-16KB

50-70 GB/sec

High end, $11/GB.
Low end: $1-4/GB

high end: 0.15W/GB
Low End: 0.05 W/GB

4KB

high end: 1-3GB/sec
low end:.l-.2GB/sec

0.03-0.1$/GB

0.0IW/GB

4KB

|00MB/sec sequential

0.4-2.0MB/sec random

Getting to each block
takes 2-10ms

Weather Database

data was downloaded from ftp://ftp.ncdc.noaa.qgov/pub/data/ghcn/daily/

|. COOPDaily_announcement _042011.pdf 122kB
Il. ghend-countries.txt 2.8kB

lll. ghcnd-inventory.txt 22.4MB

IV. ghend-states.txt 1.1kB

V. ghcend-stations.txt 7.1MB

VI. ghend_all.tar.gz 2.3GB

VIl. readme.txt 21.9kB

The format of the data

Thead -10 ls.all

Ils | wc

total 22244828

-rw-r--r--
-rw-r--r--
-rw-r--r--
-rw-r--r--
-rw-r--r--
-rw-r--r--
-rw-r--r--
-rw-r--r--
-rw-r--r--
85286

8

U e e e

yfreund
yfreund
yfreund
yfreund
yfreund
yfreund
yfreund
yfreund
yfreund

csd181
csd181
csd181
csd181
csd181
csd181
csd181
csd181
csd181

286 1364564

ldu -s #about 20Gb

20541420

13230
117180
348840
101520
708480
701460
520020
700380
643950

Dec
Dec
Jan
Dec
Jan
Jan
Jan
Jan
Dec

31
31
10
31
10
10
10
10
31

03
03
00
03
00
00
00
00
03

121
21
123
21
123
123
123
123
21

ACWO0011604.
ACWO0011647.
.dly
.dly
.dly
.dly
.dly
.dly
.dly

AE000041196
AFO00040930
AGOOOO60390
AGOOOO60590
AGO0O0060611
AGOOOO60680
AGE00135039

dly
dly

Reading many small files
takes a long time

[yfreund@ion-21-14 blocked datal$ time cat ../../ghcnd_all/* >> everything
cat: ../../ghcnd_all/output: Is a directory

real 250m2.185s
user Oml.242s
Sys 2m34 .544s

time cp everything everything_ copy
real 1m22.978s
user Om0 .722s
Sys Iml.239s

spindle
platter .

(a)

track

The disk drive

read/write

tracks

4
(’)
Q

|

Il

(

(b)

Fig. 2.1 Magnetic disk drive: (a) Data are stored on magnetized platters that rotate at
a constant speed. Each platter surface is accessed by an arm that contains a read/write
head, and data are stored on the platter in concentric circles called tracks. (b) The arms
are physically connected so that they move in unison. The tracks (one per platter) that are
addressable when the arms are in a fixed position are collectively referred to as a cylinder.

B=Block size

Total Size:

The Memory Hierarchy

B =328

ns

CPU

IC

DC

B =648

L2

N

32—256 KB

Cache

1-12MB

Memory

100 GB—-1PB

1-32GB

Long-distance communication

University: Download 10MByte/sec
Upload 5MByte/sec

Home Download 3MByte/sec
Upload 0.2Mbyte/sec

Transferring 4 Tera-Byte from UCSD to UCLA

will take more than 4 days on a dedicated
10MB/sec line.

It is cheaper and faster to FeDeX the 4TB disk.

Embarrassingly parallel problems

* Count the number of times each word
appears in all of the books in the library of
congress.

* Find all of the abnormal cells in a pap-smear
Image.

 Track the socio-economic characteristics of
people that view each you-tube video.

Word Counting

* Given a large collections of texts, and a large
cluster of computers, count the number of
appearances of each word.

e The basic scheme:

1.

Partition the texts and put each part on the disk
of a separate computer.

Each computer counts the number of
occurrences of each word in it collection.

The word counts from the different computers
are combined.

Map-Reduce for Word Count

Map Reduce: operates on (key,value) pairs:

MAP: maps each k-v input to one or more k-v
outputs.

—(,“very very cool”) -> (very,1),(very,1),(cool,1)

Reduce: Gets as input pairs with the same key

value an produces a new pair with the same
key and a combined value:

— [(Veryll)l(veryll)] -> (Very,Z)
Reductions can occur in any order.

Map-Reduce characteristics

* A map operation is nothing more than the
observation that some of the computation can
be performed independently on each piece of
data.

* Maps require no communication between
computers

* Reduction takes the outputs from the map

Distributed reductions

Reductions can occur in any order.

Each computer can do it’s
own reduction before
communicating to other
computers (combiner).

Combining all records with the same key
is done by sorting.

But how are the texts distributed to the
different computers in the first place?

\

N\

Hadoop Distributed File System (HDFS)

e Started in Google (GFS)

* Connect the personal work-stations on the
desk of each employee to create a huge
super-computer.

e Goals:

1.

A huge data repository available to all
employees.

A seamless way to use all of the computers for a
single computation task.

A fault-tolerant system.

How does HDFS work?

e The data is broken into fixed-size blocks:
default is 64MB.

* Each block is replicated. Typically 3 times.

* Each block is placed on a randomly chosen
computer. A directory structure keeps tabs for
the location of each block.

Load balancing with HDFS

1. Suppose we want to operate on a single block.
As there are 3 copies of the block, we can
choose the least loaded of these computers to
perform the operation.

2. Suppose we want to operate on a million blocks
and we have 1,000 computers. We can partition
the blocks to the computers so that they will all
finish at the same time.

3. Random location saves us from the need to
oerform initial communication to get data to the
orocessing computer.

Fault tolerance of HDFS

In a cluster of 1,000 commodity computers a few disks
crash every day.

As each block is replicated on 3 randomly chosen disks,
the probability that all three copies crash at the same

time is very small.

When a disk crashes, all we need to do is insert a new
blank disk. The system will automatically repopulate

this disk to re-establish the replication system.

The computations that took place on the computer
that crashed are automatically restarted on other

computers that hold the same disk block.

Hadoop

 Hadoop/HDFS is a free open-source
implementation of the google distributed file
system + map-reduce.

* Hadoop is written in Java

* |tis possible to write mappers and reducers in
any language by using the streaming interface

Hadoop streaming

* Can use any language in which one can write a
program that reads from stdin and writes to
stdout : C/C++,]Java, Python, PERL, Ruby,
Fortran, ...

* Need to write only three files:
— A Mapper

— A reducer (some tasks don’t require a reducer)
— An execution script

Word count mapper

#!/usr/bin/env python

#A simple python wordcount mapper
import sys

for line in sys.stdin:
line = line.strip(Q)
words = line.split()
for word in words:
] print "%s\t%s' % (word, 1)

Word Count Reducer

B! /usr/bin/env python

from operator import itemgetter
import sys

current_word = None
current_count = @
word = None

for line in sys.stdin:
line = line.stripQ)

split_line = line.split('\t", 1)
if len(split_line) == 2:

word, count = split_line
else:

continue

try:
count = int(count)
except ValueError:
continue

if current_word == word:
current_count += count
else:
if current_word:
print "¥s\t¥%s' % (current_word, current_count)
current_count = count
current_word = word

do not forget to output the last word if needed!
if current_word == word:
print "%s\t¥%s' ¥ (current_word, current_count)

Word Count Reducer

B! /usr/bin/env python

from operator import itemgetter

import sys

current_word = None try:

current_count = 0 count = int(count)
word = None except ValueError:

continue
for 1line in sys.stdin:
line = line.stripQ) if current_word == word:
current_count += count
split_line = line.split('\t", 1) else:

if len(split_line) == 2: if current_word:

word, count = split_line print "¥s\t¥%s' % (current_word, current_count)
else: current_count = count

continue current_word = word

do not forget to output the last word if needed!
if current_word == word:
print "¥s\t¥%s' % (current_word, current_count)

Word Count script

B! /bin/bash

source $C5D121/hadoop/hadoop_shared/hadoop_bashrc.sh

shopt -s expand_aliases

todo:

Problems generating the output

echo "Usage: $0 [input folder] [hadoop options...]

For example: $0 Reuters -Dmapred.map.tasks=16 -Dmapred.reduce.tasks=1"

if ["$1"] && [-d $1]
then
source=$1
else
source=$C5D181/hadoop/sample_data/WordCount/Moby-Dick/
fi

dir_hdfs=/user/$SER/wordcount/Moby-Dick
code_dir=$C5D181/hadoop/hadoop_scripts/python_streaming_wordcount

hdfs -rmr $dir_hdfs

create directory called /user/$USER/wordcount/$2/input and copy into it the files from local directory $1
hdfs -copyFromLocal $source $dir_hdfs/input # copy input into input directory

had jar /opt/hadoop/contrib/streaming/hadoop-*streaming*.jar $@ -file $code dir/map.py -mapper $code dir/map.p
-file $code _dir/reduce.py -reducer $code dir/reduce.py -input $dir_hdfs/input/* -output $dir_hdfs/output

Finding drug-drug interactions

N=10,000 drugs
A chemical/medical profile for each drug.

Find pairs of drugs that are likely to have
adverse interactions if taken at the same time.

Input consists of (key, value) pairs where key
identifies the drug and value contains drug
profile.

Assume keys can be ordered (numbers)

Straight-forward solution

Mapper stores all keys in memory:

= Ju) In

For each input (k,v,) it generates N-1 KV pairs where
Value=v,and Key=(j, k) if j<k

and Key=(k;j;) if k<]

There are two KV pairs for each K. One with the
profiles of each of the two drugs.

The reducer takes each pair and computes the
compatibility.
The main problem with this solution: N-1 records are

generated for each drug. Most of these will need to be
communicated between computers in the cluster.

A better solution

* Divide the drugs into M groups of size N/M each.

 The mapper generates for each drug group M
key-value pairs where the key consists of two

group indexes (in increasing order) and the value
consists of N/M profiles.

* This solution reduces the communication
throughput by a factor of N/M. In addition, the
communicated files are larger and therefor can
be communicated more efficiently.

So why is Hadoop a big deal?

Map/Reduce is less general than other
distributed computation system such as MPI.

Java is less efficient than C++

The Map-Reduce paradigm is very easy to
understand.

The user does not need to concern herself
with the details of communication and
synchronization. Just produce the correct key
and limit the duplication of the data.

Hadoop provides

* Hadoop provides the communication: it gets
all records with the same key to a single
reducer.

* Done through distributed sorting

e Shuffle and sort: the heart of hadoop map-
reduce, gets more sophisticated and faster
with each release.

Logical data flow

I > output
(1950, 0)
(oo 1y Lalase nnsp Joses iy | s
(aes | " asso.0.22.-11p (1950, 22) 195022
(1549, 78)
reduce.rb > output

Figure 2-1. MapReduce logical data flow

mapper locality

=(E=
— [ElIE—
—i (=3 [

rack

[Map task
([HOFS block

data center

Task with no reducers

Task with a single reducer

Figure 2-3. MapReduce data flow with a single reduce task

Task with two reducers

Figure 2-4. MapReduce data flow with multiple reduce tasks

Shuffle and Sort

Figure 6-6. Shuffle and sort in MapReduce

The amnesia of
Hadoop map reduce

Sometimes we need to iterate over
Map/Reduce steps and the map-reduce requires
touching each record.

In such cases Hadoop map-reduce requires
loading the data from disk to memory at each
step.

This disk-to-memory transfer (de-serialization)
oecomes the major bottleneck.

n general, Hadoop is a good method for batch
jobs, not very good for interactive work.

K-Means

* A very popular clustering algorithm.
* |nput:

— N pointsin R%: Xy, ..., Xy

— Desired number of clusters K
* Desired output:

—KcentersinR%: ¢, ..., C,

— Such that the
average distance btwn x; and the closest c;
is minimal

The K-Means algrorithm

* Randomly choose K points to serve as the
initial centers.

* Repeat until convergence:
1. Assign each point to the closest center point.

2. Replace each center by the mean of the points
assigned to it.

One iteration of K-Means
using Map-Reduce

e Partition the N points into M parts, each
corresponds to a mapper.
* M Mappers:

— Input: current K centers. Requires reading N/M points to main memory

— Output: the sum and the number of the points that
are assigned to each center.
* K reducers:

— Input: partial sums of the points assigned to a center.

— Output: compute the average of all of the points
associated with each center.

The problem and it’s solution

In Hadoop, mappers and reducers terminate after job
is done.

In an iterative algorithm such as K-means this means
that data is repeatedly read from disk into memory.

Spark http://spark-project.org/ a system for
performing map-reduce computation with data cached
In Main memory.

Fault tolerance is achieved through checkpointing =
writing out the state of the memory from time to time.

Using Spark one can perform real-time analysis on
100s of GB and get results within seconds.

Summary

Big data = computations where the constraining
limitation is the communication across the

memory hierarchy.

Hadoop = A way to analyze a lot of data on the
cheap.

Map-Reduce: a very simple, yet powerful, pattern
for distributed computation.

Spark — memory-resident distributed
computation.

This is only the tip of the iceberg.

Thank youl!

